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Equations are formulated for determining conditions in a chemically reacting gas 
situated inside an optical laser cavity. During lasing, the gain is held constant throughout 
the cavity as determined by a gain-equals-loss condition. For each vibrational level, a 
Boltzmann distribution for the rotational levels is assumed with lasing on each vibra- 
tional band at line center of the transition that has maximum gain. The final system 
consists of flow, chemical rate, and gain-equals-loss equations. Special numerical 
procedures for solving this system of coupled, nonlinear equations are described. 

1. INTRODUCTION 

The equations and numerical procedures are formulated for calculating condi- 
tions in a chemically reacting gas situated inside an optical laser cavity. The gas 
may be in motion, in which case it is treated as a steady, one-dimensional motion 
with lasing transverse to the direction of flow. The computer code [l] that performs 
these calculations also treats conditions in a time-dependent quiescent gas. The 
main assumptions are as follows: 

1. A constant-gain method of calculation [I, 21 is used for the radiation. 
Inherent in this method are the approximation of a near Fabry-Perot cavity and 
the assumption of steady state for the stimulated emission. The short, initial 
transient period during which the spontaneous emission is selectively amplified 
in the medium is thus neglected. 

2. The rotational populations for a given vibrational level are in a Boltzmann 
distribution at the translational temperature. This assumption applies when the 
characteristic time to achieve the distribution, usually the time for a few collisions, 
is short in comparison with a stimulated emission time. The stimulated emission 
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16 TURNER, ADAMS AND EMANUEL 

time depends on the intensity level and thus varies from case to case. One important 
consequence of this assumption and the method of constant gain is that lasing 
occurs only on a single transition between any two adjacent vibrational levels. 
(Other transitions between the two vibrational levels have smaller gain and there- 
fore do not satisfy the lasing threshold condition [3].) This transition is not fixed, 
but shifts to other rotational states during lasing. 

The problem involves solution of a coupled system of ordinary differential 
equations and nonlinear algebraic equations. A complicating factor is the large 
number of discontinuities that occur during the course of the solution. A formula- 
tion of the equations suitable for efficient computation is given in Section 2, 
while the numerical procedures used in solution of the system are given in Section 3. 
Detailed solutions may be found in [3]. 

2. EQUATIONS 

A. Rate Equations 

The rate equations for nonlasing species are well known and need no discussion. 
For the lasing species they are written as 

dni(v) 
pv dx 

~ = x,,(V) + x,,,(u) - Xrad(U - I>, r = 0, l,..., (1) 

where p is density, V is flow speed, n&u) is the mole-mass ratio (mole/g) of species i 
in vibrational level v, and x is distance in the flow direction. &h(V) is the chemical 
production term given by 

The parameters ari and pri are the stoichiometric coefficients of reactants and 
products, respectively, and kf, and kbr are the forward and backward rate coeffi- 
cients. The summation in Eq. (2) is over all reactions that alter Q(U). The quantity 
Xrad(V) accounts for the increase in n,(v) per unit volume due to lasing on the 
transition (v + 1, J,,, + m) ---f (v, Jma,), where JmsX is the rotational quantum 
number of the highest gain transition in the band and m is -1 for a P-branch 
transition and +I for an R-branch transition. Similarly, X%&U - 1) accounts 
for the decrease in Q(V) due to lasing from v to v - 1. 
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When lasing is not occurring between (v + 1) and v or between v and (v - I), 
we have 

d&(v)/dx = (l/pv) &h(Z)), (4) 

and ni(v) is treated as a nonlasing species. 
Equation (I) cannot be integrated directly as is done for the nonlasing species, 

since the X&v) are unknown. To overcome this difficulty it is necessary to 
reformulate Eq. (1). This reformulation is expedited by introduction of two 
vectors 6(v) and rP) such that 

S(0) E 1;; if X,,,(v) = 0, 
if X,,,(P) > 0, (5) 

where v = 0, I,..., Yrin - 1. (urin is the highest vibrational level being considered). 
We adjoin to this vector the values 6( - 1) = G(Crin) = 0. The zP) vector is defined 
as 

where 

0 < 0’1) < u(2) < V’S’ < .‘. < v’2N) < qin ) (6) 

zl(l) is the smallest a such that a[~+)] = 1, 

c(~) is the next larger v such that ~[v(~)] = 0, 

v@) is the next larger v such that a[~(~)] = 1, 

uc4) is the next larger v such that a[~+~)] = 0, 

(7) 

etc. This vector is 2N entries long. By means of the 6(v) we keep track of those 
vibrational bands that are lasing, while the zP) keep track of a string of adjacent 
bands all of which are lasing. 

One can readily show by writing out Eq. (1) with some of the X,,,(v) equal to 
zero that the following equations apply: 

6(Z) dn .(v) ,& * = + vg;l, xch(v)7 
P dn .(v) .:s, dx --I-- = + 5 XCh(V), *v=2)(3) 

(8) 

There are N such equations, where N is defined by Eq. (6). 
The dn,(v)/dx for the lasing species are finally determined by simultaneous 

solution of a set of equations consisting of Eq. (8), flow equations, and gain-equals- 
loss equations. These additional equations are discussed later. 
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Once values for dni/dx and X,,(v) are known, we find the X,,,(v) by writing 
Eq. (1) as 

Xrad(0) = --x,,(o) + pV(dni(O)/dx), 

X,,,(u) L Xrad(t’ - 1) - xc,(v) + p WdWW. 
(9) 

B. Flow Conservation Equations 

The equations of state, momentum, and continuity are unaltered from the final 
form given for them in [l]. For completeness we repeat them here: 

(11) 

where T is temperature, p is pressure, A is flow area, and V has been eliminated 
by means of the continuity equation. The quantities r, and A, are defined in 
terms of the molecular weight W and the universal gas constant R as 

r, = RT/WV2, (12) 

Finally, the quantity C(dnJdx) can be written as 

since all nonzero Xrad terms cancel when Eq. (1) is summed over u. 

C. Energy Equation 

The energy equation can be written for a unit volume of gas in the form 

where t is time and P is lasing output power. The specific enthalpy h is 

(14) 

(15) 

h = c Hini , (16) 
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where H,(T) is the molar enthalpy of species i. Equation (15) is written for a 
differential volume, which equals A dx. The summation on the righthand side 
represents the laser energy that leaves this volume per unit time. 

After some straightforward manipulation and using the steady-flow relation 
n( )ldt = V[d( )/dx], we obtain for the energy equation 

where 

For later convenience, we rewrite fl, as 

A dni 
Hi x - 

species 

(19) 

(211 

The derivative of the output power P(x; a) for transition (v f 1, J + m) + (v, J) 
is given by [I] 

0(x; u)/dx = hcN,&) w,(z), &mx , m) Xrad(u), u = 0, I,..., (22) 

where h is Planck’s constant, c is the speed of light, NA is Avogadro’s number 
(since &ad is in molar units), and w, is the wavenumber of the transition in cm-l. 
Define K as 

K = hcNA; = hcN.$. 

By substituting K and Eqs. (20) and (22) into Eq. (17), we obtain the final form 
for the energy equation 

(24) 
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The two j-sums need be computed only when 6(v) = 1. In these sums, therefore, 
k is an odd integer and zP) < v < zP+l). With this in mind, we see that the double 
sum on the lefthand side stems from the relation 

ufin 

(25) 

D. Flow Model Equation 

The flow model is controlled by the identity 

1 4 1 4 a,~~+a,f~+a,--+au,--=b. 
P dx P dx 

Its use is best described by an example. If the flow model is defined by specification 
of density as a function of distance, the program sets a, = a2 = a4 = 0, a3 = 1, 
and b = (l/p)(dp/dx). Including Eq. (26) in the set of simultaneous equations 
to be solved avoids the need to define a separate set of equations for each flow 
model. 

E. Gain Coefficient 

The gain coefficient a, which is the relative change in the intensity I, is given by 

4, J, m) = (IlZ)W/dx) = (hNA/477) 4u, J, 4 &p&, J, m> 
x I[(25 + 1)/(2J + 1 + 2m)l ni(u + 1, J + m) - dv, J)), (27) 

where B(v, J, m) is the Einstein absorption coefficient. The mole-mass ratio for 
the rotational population of the lasing species n,(v, J) is related to the vibrational 
population by means of the Boltzmann equation 

2J+ 1 ni(v, J) = ni(v) o exp hc E, J 
Q rot i - X ~1, 

where Qix: and E,,, (in cm-l) are the rotational partition function and the rotational 
energy, respectively, and k is Boltzmann’s constant. The line profile +e at wave 
number w, is given by 

4c = (In 2/7W2 MO, Y)/~DP(u, J, 41, (29) 

where aDp is the Doppler half-width, in wavenumber units, at half the peak 
intensity and is given by 

( 2 x 107N,kIn2 u2 
~I~P(v, J, ml = 

C 1 wc(v, J, m)(T/ W*)lf2. (30) 
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W* is the molecular weight of the lasing molecule. K(0, y) is the value of the line 
profile at line center described by the Voigt function [5] 

where 

K(0, y) = ey2[I - erf(y)], (31) 

Y = (In W2 [aLR(v, J)/Q(u, J, m)l, 

and aLR is the Lorentz half-half width [6]. 

(32) 

F. Cain-Equals-Loss Condition 

We define operationally the terms threshold, cutoff, and J-shift. By threshold on G 
we mean the first time any rotational transition (v + 1) + z, lases. Cutoff on v means 
that all rotational transitions (v + 1) + v have stopped lasing, i.e., Xrad(U) = 0. 
Finally, J-shifting means that lasing has shifted from the (a + 1, J + m) + (u, J) 
transition to an adjacent rotational transition (u + 1, J + m & 1) + (v, J & 1). 
None of the locations where threshold, J-shifts, or cutoffs occur are known 
beforehand. 

The quantities Jmax and vmax are defined as follows. From the array, 

R-branch t 1 + P-branch 
(33) 

. ..) a(u, 1, l), cX(v, 0, l), D!(v, 1, -I), ol(u, 2, -1) )...) 

we locate the unique maximum designated as OI(U, Jmax , HZ). Frequently, the 
R-branch is excluded from this search, since one can show that for most diatomics 
the maximum gain transition is in the P-branch [3]. 

After the CX(V, Jmax , m), v = 0, I ,..., array is completed, we search this array 
for the largest 01, designated as a(umax , Jmax , m). This search is done only over 
those v where no (v + 1) + v transition is lasing. Our purpose is to determine 
the next transition to go through threshold and the location where this occurs. 

The gain-equals-loss condition is written as [I, 21 

r,,(x) rd-x) expW&, JW , m>l = 1, v = 0, l,... . (34) 

The specified reflectivities of the two mirrors are r,, and r, , and L is the length 
of active medium between the mirrors and is assumed constant. 

Equation (34) appears in the literature in different forms and with different 
names. For example, it is sometimes referred to as a saturation condition [7], 
since it forces the gain to have a value generally very different from a zero-power 
value. It can also be considered as a steady-state relation for the radiation [3]. 
We refer to Eq. (34) as a gain-equals-loss equation because the exponential gives 
the round-trip gain in the intensity, while the product r,,r, gives the attenuation 
in the intensity at the two mirrors that just balances the round-trip gain. 
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We wish to re-express Eq. (34) as a differential equation, since it will be used 
in a system of equations that is linear in the derivatives. We first combine Eqs. (27)- 
(31) to obtain 

oi(v, J, m) = [32 
h2C2N 

A 
w* 112 

- x 107.rr3k T I pB(v, J, m)(2J + 1) 

x %(u+l) 

I 

hc Ev+w+m 

Qp exp - k ( 

Q(V) 

T 1 - (v) exp ( 

hc -6,~ 

Q k T 11 . rot 
(35) 

Equation (35) is strictly valid only for a Doppler line profile. The more general 
Voigt profile leads to excessively complicated results when ol(v, J, m) is differen- 
tiated. For a gas at low pressure, the line profile at line center is accurately given 
by a Doppler profile and the error in the above approximation is negligible. Even 
in those calculations performed to date at a high pressure (one atmosphere or 
more), where the transition has a Lorentz profile, the variation in gain from the 
correct Voigt value has been less than 5 %. 

We next combine Eqs. (34) and (35) to obtain 

Al(v) = A2(v) + [32 ;c:;;3k &]‘lz 2Q,B(v, Jm3;;2Jmax + ,) 3 (36) 

where A, and A, are 

A 

1 
(v) _ ‘(‘) %(‘> exp 

Q 

W) 
rot 

A (v) 
2 

_ @) dv + ‘1 exp 

Q 

(v+l) 
rot 

(37) 

(38) 

The 6(v) coefficient is inserted in both expressions for convenience. We now 
differentiate Eq. (36) to obtain our final form for the gain-equals-loss equation 

I[ 
h~-JkGlm 

kT - C(u, T) - ;] A,(v) 

[ 
hc-L,Jm,,+m - 

kT 
- C(v + 1, T) - ;] A,(v)/ 4% 

+ [A,(v) - A,(v)] ; $ + # y 
z 

A,(v) dndu + 1) - 
ni(v + 1) dx = [A,(u) - b.bW, v = 0, I,..., (39) 
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We conclude this section by noting that our formulation is applicable to a 
quiescent gas if we simply set .X = t, A = 1, and V = 1. 

3. NUMERICAL PROCEDURES 

A. Integration Method 

We use a standard, fourth-order, Runge-Kutta method for the integration. 
The maximum allowable step size BK is determined by the chemistry [8] and is 
used whenever lasing is not occurring. We refer to BK as the maximum allowable 
step size because the actual integration step size is frequently smaller. The need 
for a smaller step size is a consequence of the discontinuities at threshold, J-shift, 
and cutoff points. The step size is adjusted so that these discontinuities occur 
between integration steps, not during them. 

Unlike some methods, Runge-Kutta does not require data from previously 
computed steps. Hence, discontinuities are easily handled. For this reason and 
because of the accuracy, modest storage requirement, and, most importantly, 
the ease with which the step size can be altered by an arbitrary amount, the Runge- 
Kutta method is preferable for calculations of this type. 

B. The Nonlasing A-Matrix 

At the start of a calculation, the gain coefficients a(v, J, m) are computed and 
we test the inequality 

rorL exp[21a(vmax , Lax , m>l < 1. (41) 

If it is satisfied, then lasing has not yet occurred. The integration during nonlasing 
periods is the simpler case and, therefore, is discussed separately at this time. 

The derivatives dnJdx are computed from Eq. (4). Since this is a nonlasing 
situation, all xrad(~) = 0 and all 6(v) = 0. The four Eqs. (lo), (1 l), (17), and (26) 
are set up in the following format: 

1 0 1 -1 

0 1 1 -r, 

r, 0 0 -1 

al 4 a3 4 

1 dT -___ 
T dx 
1 dA -__ 
A dx 
1 dp -__ 
p dx 
1 dp -__ 
P dx 

4 

0 

ffl 

b 

(42) 
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from which the derivatives of T, A, p, and p are easily solved. This procedure 
is continued until threshold is encountered. For convenience, we have named 
this form the A-matrix. 

C. Detection of Threshold, J-Shijt, CutofJ 

Each time a transition between v and v + 1 reaches threshold, there is a dis- 
continuous change in the derivative of q(v + 1) and of n,(v) due to the inception 
of lasing on this transition. Consequently, the structure of the A-matrix, discussed 
shortly, will change; the A-matrix, therefore, must be reformulated and an updated 
set of dn$(v)/dx must be calculated before the Runge-Kutta integration can proceed. 

At each integration step, the cu(v, J max, m) array is checked for each v to deter- 
mine whether the Jmax for that transition has changed from its value at the 
preceding step. If such a change has occurred, the derivatives of ni(v) and ni(v + 1) 
show discontinuous changes and must be recalculated, and the A-matrix must be 
updated, before the integration can continue. 

Prior to each integration step, all transitions lasing on the previous step must 
be checked for cutoff. If a (v + 1) --f v transition was lasing during the previous 
step but now shows a X,,,(v) < 0, cutoff has occurred. 

D. Step Size Control 

During nonlasing periods, the step size is computed solely on the basis of 
numerical stability as affected by the chemistry. During lasing periods, frequent 
encounters with new transitions, J-shifts, and cutoffs make orthodox methods 
unsatisfactory. Even in that portion of the integration antecedent to lasing, 
additional control must be exercised so that the threshold location is situated 
between integration steps. These controls are maintained at each step by computa- 
tion of alternative step sizes on the basis of discontinuity and other limiting 
criteria and selection of the smallest of the alternatives for use in the integration. 
Any negative dx is discarded in this selection process. Candidate step sizes are 
calculated with respect to numerical stability, threshold, J-shift, and cutoff. 

For previously nonlasing transitions, threshold occurs when inequality (41) is 
no longer satisfied. We can account for any upcoming discontinuity due to a new 
threshold by determining the largest OI(V, Jmax , m) from the nonlasing transitions 
and calculating, by a modified linear extrapolation, the step size necessary for 
that gain coefficient to reach the critical value -(ln rUrL) + 2L. Simple linear 
extrapolation, which initially was used, was found to be very inaccurate for 
predicting this location. (This method would frequently result in a gain value 
well above that at threshold). The difficulty was overcome by use of an under- 
relaxation/over-relaxation technique; namely, the linearly extrapolated value for 
step size is multiplied by a coefficient whose value is either 0.6, 0.9, or 1.01. The 
coefficient 0.6 is used in the calculation of the candidate step size at each step 



CHEMICAL LASER CALCULATIONS 25 

i; 

” 
” + + + 



26 TURNER, ADAMS AND EMANUEL 

until such a candidate becomes selected as the dx for that step. Once this happens, 
the coefficient 0.9 is then used for computing the candidate dx at the following 
step; if this candiate also becomes selected, then the coefficient 1.01 is used for 
each successive candidate dx until the sequence is broken by determination of the 
integration step size by some means other than imminent threshold. Anytime the 
sequence is broken, the coefficient reverts to the value 0.6. In addition, it has been 
found necessary to calculate a step size for threshold on the adjacent rotational 
transitions to cover those situations in which a Jmax-shift simultaneously may 
occur. The minimum dx so determined becomes a candidate step size. 

A similar treatment is applied to a(~, Jmag h 1, m) after threshold so that a 
step size dependent upon J-shifting can be calculated. The dx necessary for each 
a(~, Jmax & 1, m) to equal ol(v, Jmax , m) is computed. Again it is necessary to 
supplement the linear extrapolation with an under-relaxation/over-relaxation 
technique. The J-shift candidate step size is calculated by multiplication of the 
linearly extrapolated value by the coefficient 0.8 at each step until such a candidate 
becomes selected as the dx for that step. Once this happens, the coefficient 1.01 
is then used in computation of the candidate dx at each successive step until the 
sequence is broken by determination of the integration step size by some means 
other than an approaching J-shift. When the sequence is broken, the coefficient 
reverts to the value 0.8. 

A candidate step size is also computed on the basis of each lasing transition 
reaching cutoff. This is determined via conventional linear extrapolation, which is 
sufficiently accurate in this case. 

E. The Lasing A-Matrix 

Once lasing begins, it is advantageous to add additional vfin + 1 equations to 
the nonlasing A-matrix in order to solve for the &(v)/dx simultaneously with 
dT/dx, dA/dx, dpldx, and dpldx. 

The first four rows of the matrix are Eqs. (24), (IO), (1 l), and (26), as shown 
in Fig. 1. Equation (4) is used whenever S(v) + 6(v - 1) = 0. Since N = 1, we 
require only one equation of the form Eq. (8). Finally, there are C 6(u) = 1 
Eqs. (39), which complete the A-matrix. Solution of the matrix equation then 
yields the derivatives that are numerically integrated. 
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